General Physics 40 A B C D E - Syllabus Addendum for Prospective		
Teachers		
Young H. D. & Freedman, R. A. (2004). University Physics, 11th Edition		
Chapter	Subject Matter Requirements for Prospective Teachers General Science	Academic content standards for kindergarten through grade twelve, adopted by the California State Board of Education
Ch 1-Units, Physical Quantities, and Vectors	9.1c Describe the relationships among position, distance, displacement, speed, velocity, acceleration, and time, and perform simple calculations using these variables for both linear and circular motion	Science Content Standards for California Public Schools, Grade 8: 1c Students solve problems involving distance, time, and average speed.
Ch 2-Motion along a Straight Line	9.1c Describe the relationships among position, distance, displacement, speed, velocity, acceleration, and time, and perform simple calculations using these variables for both linear and circular motion	Science Content Standards for California Public Schools, Grade 8: 1c Students solve problems involving distance, time, and average speed.
	9.1e Construct and analyze simple vector and graphical representations of motion and forces (e.g., distance, speed, time)	Science Content Standards for California Public Schools, Grade 8: 1a Students know position is defined in relation to some choice of a standard reference point and a set of reference directions; 1b Students know that average speed is the total distance traveled divided by the total time elapsed and that speed of an object of an object along the path travels can vary; 1c Students know how

Ch 3-Motion in Two or Three Dimensions	9.1c Describe the relationships among position, distance,	to solve problems involving distance; time, and average speed; 1d Students know the velocity of an object must be described by specifying both the direction and the speed of the object; 1e Students know changes in velocity may be due to changes in speed, direction, or both; 1g Students know how to interpret graphs of position versus time and graphs of speed versus time for motion in a single direction <u>Science Content Standards</u> for California Public <u>Schools</u> , Grade 8: 1c
	displacement, speed, velocity, acceleration, and time, and perform simple calculations using these variables for both linear and circular motion	Students solve problems involving distance, time, and average speed.
	9.1e Construct and analyze simple vector and graphical representations of motion and forces (e.g., distance, speed, time)	Science Content Standards for California Public Schools, Grade 8: 1a Students know position is defined in relation to some choice of a standard reference point and a set of reference directions; 1b Students know that average speed is the total distance traveled divided by the total time elapsed and that speed of an object of an object along the path travels can vary; 1c Students know how to solve problems involving distance; time, and average speed; 1d Students know the velocity of an object

		must be described by specifying both the direction and the speed of the object; 1e Students know changes in velocity may be due to changes in speed, direction, or both; 1g Students know how to interpret graphs of position versus time and graphs of speed versus time for motion in a single direction
Ch 4-Newton's Laws of Motion	9.1a Discuss and apply Newton's laws (i.e., first, second, third, and law of universal gravitation)	Science Content Standards for California Public Schools, Grade 8: 1a Students know position is defined in relation to some choice of a standard reference point and a set of reference directions; 1b Students know that average speed is the total distance traveled divided by the total time elapsed and that the speed of an object along the path traveled can vary; 1c Students know how to solve problems involving distance, time, and average speed; 1d Students know the velocity of an object must be described by specifying both the direction and the speed of the object; 1e Students know changes in velocity my be due to changes in speed, direction or both
	9.1d Identify the separate forces that act on a body (e.g., gravity, pressure, tension/compression, normal force, friction) and describe the net force on the body	Science Content Standards for California Public Schools, Grade 8: 2b Students know when an object is subject to two or more forces at once, the result is the cumulative

	effect of all the forces.
9 1e Construct and analyze	Science Content Standards
simple vector and graphical	for California Public
representations of motion	Schools Grade 8: 1a
and forces (e.g. distance	Students know position is
and forces (e.g., distance,	defined in relation to some
speed, time)	defined in relation to some
	choice of a standard
	reference point and a set of
	reference directions; 1b
	Students know that average
	speed is the total distance
	traveled divided by the total
	time elapsed and that speed
	of an object of an object
	along the path travels can
	vary; 1c Students know how
	to solve problems involving
	distance; time, and average
	speed; 1d Students know
	the velocity of an object
	must be described by
	specifying both the
	direction and the speed of
	the object: 1e Students
	know changes in velocity
	may be due to changes in
	speed direction or both: 1g
	Students know how to
	interpret graphs of position
	versus time and graphs of
	speed versus time for
	motion in a single direction
9 1f Identify fundamental	Science Content Standarda
forces including gravity	for California Public
nuclear forces, and	Schools Grada 8: 2a
alastromagnetia foreas	Students know a force has
(magnetic and cleatric) and	bath direction and
(magnetic and electric), and	both direction and
explain their roles in nature,	magnitude; 26 Students
such as the role of gravity in	know when an object is
maintaining the structure of	subject to two or more
the universe	torces at once the result is
	the cumulative effect of all
	the forces; 2c Students
	know when the forces of an
	object are balanced the

		motion of the object does
		not change; Students know
		to identify separately the
		two or more forces that are
		acting on a single static
		object including gravity
		object including gravity,
		elastic forces due to telision
		or compression in matter
		and friction; 2e Students
		know that when the forces
		on a object are unbalanced,
		the object will change its
		velocity; 2f Students know
		the greater the mass of an
		object, the more force is
		needed to achieve the same
		rate of change in motion; 2g
		Students know the role of
		gravity in forming and
		maintaining the shapes of
		planets, stars, and solar
		system
	9 19 Explain and calculate	Science Content Standards
	mechanical advantages for	for California Public
	levers pulleys and inclined	Schools Grade 7: 6h
	planes	Students know how to
	planes	compare joints in the body
		with structures used in
		machines and simple
		devices G Students know
		devices; of Students know
		how levers confer
		mechanical advantage and
		how the application of this
		principle applies to the
		musculoskeletal system
Ch 5-Applying Newton's	9.1a Discuss and apply	Science Content Standards
Laws	Newton's laws (i.e., first,	for California Public
	second, third, and law of	Schools, Grade 8: 1a
	universal gravitation)	Students know position is
		defined in relation to some
		choice of a standard
		reference point and a set of
		reference directions: 1b
		Students know that average
		speed is the total distance
		traveled divided by the total

	time elapsed and that the
	speed of an object along the
	path traveled can vary; 1c
	Students know how to solve
	problems involving
	distance time and average
	speed: 1d Students know
	the velocity of an object
	must be described by
	specifying both the
	direction and the speed of
	the objects le Students
	the object, le Students
	know changes in velocity
	my be due to changes in
	speed, direction or both
9.1e Construct and analyze	Science Content Standards
simple vector and graphical	for California Public
representations of motion	Schools, Grade 8: 1a
and forces (e.g., distance,	Students know position is
speed, time)	defined in relation to some
	choice of a standard
	reference point and a set of
	reference directions; 1b
	Students know that average
	speed is the total distance
	traveled divided by the total
	time elapsed and that speed
	of an object of an object
	along the path travels can
	vary; 1c Students know how
	to solve problems involving
	distance; time, and average
	speed; 1d Students know
	the velocity of an object
	must be described by
	specifying both the
	direction and the speed of
	the object: 1e Students
	know changes in velocity
	may be due to changes in
	speed direction or both: 1g
	Students know how to
	interpret graphs of position
	versus time and graphs of
	spaad various time for
	specu versus time for
	motion in a single direction

9.1f Identify fundamental	Science Content Standards
forces, including gravity,	for California Public
nuclear forces, and	Schools, Grade 8: 2a
electromagnetic forces	Students know a force has
(magnetic and electric), and	both direction and
explain their roles in nature,	magnitude; 2b Students
such as the role of gravity in	know when an object is
maintaining the structure of	subject to two or more
the universe	forces at once the result is
	the cumulative effect of all
	the forces; 2c Students
	know when the forces of an
	object are balanced the
	motion of the object does
	not change: Students know
	to identify separately the
	two or more forces that are
	acting on a single static
	object including gravity.
	elastic forces due to tension
	or compression in matter
	and friction: 2e Students
	know that when the forces
	on a object are unbalanced
	the object will change its
	velocity: 2f Students know
	the greater the mass of an
	object the more force is
	needed to achieve the same
	rate of change in motion: 2g
	Students know the role of
	gravity in forming and
	maintaining the shapes of
	planets stars and solar
	system
 9 lg Explain and calculate	Science Content Standards
mechanical advantages for	for California Public
levers nulleys and inclined	Schools Grade 7. 6h
nlanes	Students know how to
Princo	compare joints in the body
	with structures used in
	machines and simple
	devices: 6 Students know
	how levers confer
	machanical advantage and
	how the application of this
	now the application of this

		principle applies to the
		musculoskeletal system
Ch 7-Potential Energy and	9.1g Explain and calculate	Science Content Standards
Energy Conservation	mechanical advantages for	for California Public
	levers, pulleys, and inclined	Schools, Grade 7: 6h
	planes	Students know how to
		compare joints in the body
		with structures used in
		machines and simple
		devices; 6i Students know
		how levers confer
		mechanical advantage and
		how the application of this
		principle applies to the
		musculoskeletal system
Ch 12-Gravitation	9.1a Discuss and apply	Science Content Standards
	Newton's laws (i.e., first,	for California Public
	second, third, and law of	Schools, Grade 8: 1a
	universal gravitation)	Students know position is
		defined in relation to some
		choice of a standard
		reference point and a set of
		reference directions; 1b
		Students know that average
		speed is the total distance
		traveled divided by the total
		time elapsed and that the
		speed of an object along the
		path traveled can vary; 1c
		Students know how to solve
		problems involving
		distance, time, and average
		speed; 1d Students know
		the velocity of an object
		must be described by
		specifying both the
		direction and the speed of
		the object; 1e Students
		know changes in velocity
		my be due to changes in
		speed, direction or both
	9.1f Identify fundamental	Science Content Standards
	forces, including gravity,	for California Public
	nuclear forces, and	Schools, Grade 8: 2a
	electromagnetic forces	Students know a force has
	(magnetic and electric), and	both direction and

	explain their roles in nature,	magnitude; 2b Students
	such as the role of gravity in	know when an object is
	maintaining the structure of	subject to two or more
	the universe	forces at once the result is
		the cumulative effect of all
		the forces: 2c Students
		know when the forces of an
		object are balanced the
		motion of the object does
		not change: Students know
		to identify separately the
		two or more forces that are
		acting on a single static
		object including gravity
		elastic forces due to tension
		or compression in matter
		and friction: 2e Students
		know that when the forces
		on a object are unbalanced
		the object will change its
		velocity: 2f Students know
		the greater the mass of an
		object the more force is
		needed to achieve the same
		rate of change in motion: 2g
		Students know the role of
		gravity in forming and
		maintaining the shapes of
		planets stars and solar
		system
Ch 14 Eluid Machanias	0 1h Define pressure and	System Science Content Stendards
CII 14-Fluid Mechanics	9.10 Define pressure and	Science Content Standards
	relate it to fluid flow and	<u>Ior California Public</u>
	buoyancy (e.g., neart	Schools, Grade 7: 6j
	valves, autospheric	Students know that
	pressure)	contractions of the near
		generate blood pressure and
		that the heart valves prevent
		backflow of blood in the
		Circulatory system
Cn 15- Mechanical waves	8.1a Compare the	Science Content Standards for California Public Schools, Grade
	characteristics of sound,	3: 1d Students know energy can
	light, and seismic waves	be carried from one place to
	(e.g.,	another by waves, such as water
	transverse/longitudinal,	waves and sound waves by
	travel through various	electric current and by moving
	media, relative speed)	know energy can be carried from

		one place to another by heat flow or by waves including water, light and sound waves, or by moving objects; Grades 9-12: Physics 4a Students know waves carry energy from one place to another; 4f Students know how to identify the characteristic properties of waves: Interference (beats), diffraction, reaction, Dopler effect, and polarization
	8.1b Explain that energy is transferred by waves without mass transfer and provide examples	Science Content Standards for California Public Schools, Grades 9-12: Physics 4b Students know how to identify transverse and longitudinal waves in mechanical media such as springs and ropes and on the earth (seismic waves); 4d Students know sound is a longitudinal wave whose speed depends on the properties of the medium in which it propagates
Ch 16-Sound and Hearing	8.1a Compare the characteristics of sound, light, and seismic waves (e.g., transverse/longitudinal, travel through various media, relative speed)	Science Content Standards for California Public Schools, Grade 3: 1d Students know energy can be carried from one place to another by waves, such as water waves and sound waves by electric current and by moving objects; Grade 6: 3a Students know energy can be carried from one place to another by heat flow or by waves including water, light and sound waves, or by moving objects; Grades 9-12: Physics 4a Students know waves carry energy from one place to another; 4f Students know how to identify the characteristic properties of waves: Interference (beats), diffraction, reaction, Dopler effect, and polarization
Ch 21-Electrical Charge and Electric Field	9.1f Identify fundamental forces, including gravity, nuclear forces, and electromagnetic forces (magnetic and electric), and explain their roles in nature, such as the role of gravity in maintaining the structure of the universe	Science Content Standards for California Public Schools, Grade 8: 2a Students know a force has both direction and magnitude; 2b Students know when an object is subject to two or more forces at once the result is the cumulative effect of all the forces; 2c Students

	C
know when the forces o	f an
object are balanced the	
motion of the object doe	ès
not change; Students kn	OW
to identify separately the	e
two or more forces that	are
acting on a single static	
object including gravity	,
elastic forces due to tens	sion
or compression in matte	r
and friction; 2e Students	S
know that when the force	es
on a object are unbalance	ed,
the object will change it	S
velocity; 2f Students kn	ow
the greater the mass of a	in
object, the more force is	3
needed to achieve the sa	ime
rate of change in motion	ı; 2g
Students know the role	of
gravity in forming and	
maintaining the shapes	of
planets, stars, and solar	
system	
10.1a Describe and provide Science Content Standa	rds
examples of electrostatic for California Public	
and magnetostatic Schools, Grade 4: 1e	
phenomena Students know electrica	lly
charged objects attract of	or
repel each other; 1f	
Students know that mag	nets
have two poles and that	like
poles repel each other a	ind
unlike poles attract each	1
other	
10.1b Predict charges or Science Content Standa	rds
poles based on for California Public	
attraction/repulsion Schools, Grade 4: 1e	
observations Students know electrica	llv
charged objects attract of	,
repel each other: 1f)r
	or
Students know that mag	or
Students know that mag have two poles and that	or nets like
Students know that mag have two poles and that poles repel each other a	inets like
Students know that mag have two poles and that poles repel each other a unlike poles attract each	inets like ind

Ch 22-Guass's Law	10.1a Describe and provide examples of electrostatic and magnetostatic phenomena	Science Content Standards for California Public Schools, Grade 4: 1e Students know electrically charged objects attract or repel each other; 1f Students know that magnets have two poles and that like poles repel each other and unlike poles attract each other
Ch 23-Electric Potential	10.1a Describe and provide examples of electrostatic and magnetostatic phenomena	Science Content Standards for California Public Schools, Grade 4: 1e Students know electrically charged objects attract or repel each other; 1f Students know that magnets have two poles and that like poles repel each other and unlike poles attract each other
Ch 24-Capacitance and Dielectrics	10.1a Describe and provide examples of electrostatic and magnetostatic phenomena	Science Content Standards for California Public Schools, Grade 4: 1e Students know electrically charged objects attract or repel each other; 1f Students know that magnets have two poles and that like poles repel each other and unlike poles attract each other
Ch 26-Direct-Current Circuits	10.1f Define and calculate power, voltage differences, current, and resistance in simple circuits	Science Content Standards for California Public Schools, Grade 8: 1g Students know electrical energy can be converted to heat, light, and motion; Grades 9-12: Physics 5a Students know how to predict the voltage or current in simple direct current electric circuits constructed from batteries, wires, resistors and

Ch 27 Manuatia Filadana		capacitors; 5b Students know to solve problems involving Ohm's law; 5c Students know any resistive element in a DC circuit dissipates energy, which heats the resistor. Students can calculate the power (rate of energy dissipation) in any resistive circuit element by using the formula Power = IR (potential difference) x I (current) = I^2R
Ch 27-Magnetic Filed and Magnetic Forces	9.1f Identify fundamental forces, including gravity, nuclear forces, and electromagnetic forces (magnetic and electric), and explain their roles in nature, such as the role of gravity in maintaining the structure of the universe	<u>Science Content Standards</u> <u>for California Public</u> <u>Schools</u> , Grade 8: 2a Students know a force has both direction and magnitude; 2b Students know when an object is subject to two or more forces at once the result is the cumulative effect of all the forces; 2c Students know when the forces of an object are balanced the motion of the object does not change; Students know to identify separately the two or more forces that are acting on a single static object including gravity , elastic forces due to tension or compression in matter and friction; 2e Students know that when the forces on a object are unbalanced, the object will change its velocity; 2f Students know the greater the mass of an object, the more force is needed to achieve the same rate of change in motion; 2g Students know the role of gravity in forming and

		maintaining the shapes of planets, stars, and solar system
	10.1a Describe and provide examples of electrostatic and magnetostatic phenomena	Science Content Standards for California Public Schools, Grade 4: 1e Students know electrically charged objects attract or repel each other; 1f Students know that magnets have two poles and that like poles repel each other and unlike poles attract each other
	10.1b Predict charges or poles based on attraction/repulsion observations	Science Content Standards for California Public Schools, Grade 4: 1e Students know electrically charged objects attract or repel each other; 1f Students know that magnets have two poles and that like poles repel each other and unlike poles attract each other
	10.1c Build a simple compass and use it to determine direction of magnetic fields, including the Earth's magnetic field	Science Content Standards for California Public Schools, Grade 4: 1b Students know how to build a simple compass and use it to detect magnetic effects including Earth's magnetic field
Ch 28-Sources of Magnetic Field	10.1a Describe and provide examples of electrostatic and magnetostatic phenomena	Science Content Standards for California Public Schools, Grade 4: 1e Students know electrically charged objects attract or repel each other; 1f Students know that magnets have two poles and that like poles repel each other and unlike poles attract each other
	10.1d Relate electric currents to magnetic fields	Science Content Standards for California Public

Ch 29 Electomagnetic	and describe the application of these relationships, such as in electromagnets, electric current generators, motors, and transformers	Schools, Grade 4: 1C Students know electric currents produce magnetic fields and know how to build a simple electro magnet; 1d Students know the role of electromagnets in the construction of electric motors electric generators and simple devices such as doorbells and earphones
Induction	currents to magnetic fields and describe the application of these relationships, such as in electromagnets, electric current generators, motors, and transformers	<u>for California Public</u> <u>Schools</u> , Grade 4: 1C Students know electric currents produce magnetic fields and know how to build a simple electro magnet; 1d Students know the role of electromagnets in the construction of electric motors electric generators and simple devices such as doorbells and earphones
Ch 30-Inductance	10.1d Relate electric currents to magnetic fields and describe the application of these relationships, such as in electromagnets, electric current generators, motors, and transformers	Science Content Standards for California Public Schools, Grade 4: 1C Students know electric currents produce magnetic fields and know how to build a simple electro magnet; 1d Students know the role of electromagnets in the construction of electric motors electric generators and simple devices such as doorbells and earphones
Ch 31-Alternating Current	10.1d Relate electric currents to magnetic fields and describe the application of these relationships, such as in electromagnets, electric current generators,	Science Content Standards for California Public Schools, Grade 4: 1C Students know electric currents produce magnetic fields and know how to

	motors, and transformers	build a simple electro
		magnet; 1d Students know
		the role of electromagnets
		in the construction of
		electric motors electric
		generators and simple
		devices such as doorbells
		and earphones
	10.1f Define and calculate	Science Content Standards
	nower voltage differences	for California Public
	power, voltage differences,	<u>Fohcala</u> Crada 9: 13
	current, and resistance in	Steadarts language ale striged
	simple circuits	Students know electrical
		energy can be converted to
		heat, light, and motion;
		Grades 9-12: Physics 5a
		Students know how to
		predict the voltage or
		current in simple direct
		current electric circuits
		constructed from batteries,
		wires, resistors and
		capacitors; 5b Students
		know to solve problems
		involving Ohm's law; 5c
		Students know any resistive
		element in a DC circuit
		dissipates energy, which
		heats the resistor. Students
		can calculate the power
		(rate of energy dissination)
		in any registive circuit
		alament by using the
		c l D ID
		formula Power = IR
		(potential difference) x I 1^{2}
		(current) = 1 K
Ch 32-Electromagnetic	8.1a Compare the	Science Content Standards for California Public Schools, Grade
Waves	characteristics of sound,	3. 1d Students know energy can
	light, and seismic waves	be carried from one place to
	(e.g.,	another by waves, such as water
	transverse/longitudinal,	waves and sound waves by
	travel through various	electric current and by moving
	media, relative speed)	objects; Grade 6: 3a Students
	_	know energy can be carried from
		or by wayes including water light
		and sound waves. or by moving
		objects; Grades 9-12: Physics 4a
		Students know waves carry

		energy from one place to another; 4f Students know how to identify the characteristic properties of waves: Interference (beats), diffraction, reaction, Dopler effect, and polarization
Ch 33-The Nature and Propagation of Light	8.1e Compare transmission, reflection, and absorption of light in matter	Science Content Standards for California Public Schools, Grade 3: 2a Students know sunlight can be locked to create shadows; 2b Students know light is reflected from mirrors and other surfaces; 2c Students know the color of light striking an object affects the way the object is seen; 2d Students know an object is seen when light traveling from the object enters the eye; Grade 7: 6a Students know visible light is a small band within a very broad electromagnetic spectrum; 6c Students know that light travels
		in straight lines if the medium it travels through does not change
Ch 34-Geometric Optics and Optical Instruments	8.1c Explain how lenses are used in simple optical systems, including the camera, telescope, microscope, and the eye	Science Content Standards for California Public Schools, Grade 3: 4c Students know telescopes magnify the appearance of some distant objects in the sky including the moon and the planets. The number of stars that can be seen through telescopes is dramatically greater than the number that can be seen by the unaided eye; Grade 7: 6d Students know how simple lenses are used in a magnifying glass, the eye, a cameral, a telescope, and a microscope
	8.1d Explain and apply the laws of reflection and refraction	Science Content Standards for California Public Schools, Grade 7: 6e Students know white light is a mixture of many wavelengths and that retinal cells react differently to different wavelengths; 6g Students know the angle of reflection of a light beam is equal to the angle of incidence
	8.1e Compare transmission, reflection, and absorption of light in matter	Science Content Standards for California Public Schools, Grade 3: 2a Students know sunlight can be locked to create shadows; 2b Students know light is reflected from mirrors and other surfaces; 2c Students know the color of

		light striking an object affects the way the object is seen; 2d Students know an object is seen when light traveling from the object enters the eye; Grade 7: 6a Students know visible light is a small band within a very broad electromagnetic spectrum; 6c Students know that light travels in straight lines if the medium it travels through does not change
Chapter	Physics Subject Matter	Academic content standards for kindergarten through grade
	Requirements	twelve, adopted by the
		California State Board of
		Education
ch 2- Motion along a straight line	1.16 Construct appropriate free-body diagrams of many-body problems (e.g., two or more coupled masses)	California Public Schools, Grades 9-12, Physics: 1d Students know that when one object exerts a force on a second object, the second object always exerts a force of equal magnitude and in the opposite direction (Newton's third law)
	1.1e Generate and understand functional relationships of graphs showing distance, velocity, and acceleration versus time	<u>Science content Standards for</u> <u>California Public Schools</u> , Grades 9-12, Physics: 1a Students know how to solve problems that involve constant speed and average speed; 1b <i>Students know</i> that when forces are balanced, no acceleration occurs; thus an object continues to move at a constant speed or stays at rest (Newton's first law); 1c Students know how to apply the law F=ma to solve one-dimensional motion problems that involve constant forces (Newton's second law); 1d Students know that when one object exerts a force on a second object, the second object always exerts a force of equal magnitude and in the opposite direction (Newton's third law); 1e Students know the relationship between the universal law of gravitation and the effect of gravity on an object at the surface of Earth; 1f Students know applying a force to an object perpendicular to the direction of its motion causes the object to change direction but not speed (e.g., Earth's gravitational force causes a satellite in a circular orbit to change direction but not speed); 1g Students know circular motion requires the application of a constant force

		directed toward the center of the circle.
	1.1f Recognize relationships among variables for linear motion and rotational motion	Science Content Standards for California Public Schools, Grades 9-12, Physics: 1h* Students know Newton's laws are not exact but provide very good approximations unless an object is moving close to the speed of light or is small enough that quantum effects are important; 1i* Students know how to solve two-dimensional trajectory problems; 1j* Students know how to resolve two- dimensional vectors into their components and calculate the magnitude and direction of a vector from its components; 1k* Students know how to solve two- dimensional problems involving balanced forces (statics); 1I* Students know how to solve problems in circular motion by using the formula for centripetal acceleration in the following form: $a=v^2/r$; 1m* Students know how to solve problems involving the forces between two electric charges at a distance (Coulomb's law) or the forces between two masses at a distance (universal gravitation).
Ch 3-Motion in two or three dimensions	1.1b Construct appropriate free-body diagrams of many-body problems (e.g., two or more coupled masses)	Science Content Standards for California Public Schools, Grades 9-12, Physics: 1d Students know that when one object exerts a force on a second object, the second object always exerts a force of equal magnitude and in the opposite direction (Newton's third law)
	1.1d Solve 2-dimensional problems involving vector analysis of motion and forces, including projectile motion, uniform circular motion, and statics	Science Content Standards for California Public Schools, Grades 9-12, Physics: 1 f Students know applying a force to an object perpendicular to the direction of its motion causes the object to change direction but not speed (e.g., Earth's gravitational force causes a satellite in a circular orbit to change direction but not speed); g Students know circular motion requires the application of a constant force directed toward the center of the circle; j* Students know how to resolve two-dimensional vectors into their components and calculate the magnitude and direction of a vector from its components: k *

		Students know how to solve two- dimensional problems involving balanced forces (statics)
	1.1e Generate and understand functional relationships of graphs showing distance, velocity, and acceleration versus time	Science Content Standards for California Public Schools, Grades 9-12, Physics: 1a Students know how to solve problems that involve constant speed and average speed; 1b <i>Students know</i> that when forces are balanced, no acceleration occurs; thus an object continues to move at a constant speed or stays at rest (Newton's first law); 1c Students know how to apply the law F=ma to solve one-dimensional motion problems that involve constant forces (Newton's second law); 1d Students know that when one object exerts a force on a second object, the second object always exerts a force of equal magnitude and in the opposite direction (Newton's third law); 1e Students know the relationship between the universal law of gravitation and the effect of gravity on an object at the surface of Earth; 1f Students know applying a force to an object perpendicular to the direction of its motion causes the object to change direction but not speed (e.g., Earth's gravitational force causes a satellite in a circular orbit to change direction but not speed); 1g Students know circular motion requires the application of a constant force directed toward the center of the circle
	2.1f Interpret force-versus- time and force-versus- distance graphs to find, for example, work done or impulse on a system	Science Content Standards for California Public Schools, Grades 9-12, Physics: 2a Students know how to calculate kinetic energy by using the formula E=(1/2)mv ² ; 2c Students know how to solve problems involving conservation of energy in simple systems, such as falling objects
Ch 4- Newton's laws of motion	1.1a Solve problems using Newton's Second Law (e.g., problems involving time, velocity, and space- dependent forces)	Science Content Standards for California Public Schools, Grades 9- 12, Physics: 1 a Students know how to solve problems that involve constant speed and average speed, 1b Students know that when forces are balanced, no acceleration occurs; thus an object continues to move at a constant speed or stays at rest (Newton's first law); 1c Students know how to apply the law F=ma to solve one-dimensional motion

	1.1b Construct appropriate free-body diagrams of many-body problems (e.g., two or more coupled masses)	problems that involve constant forces (Newton's second law) 1h * <i>Students</i> <i>know</i> Newton's laws are not exact but provide very good approximations unless an object is moving close to the speed of light or is small enough that quantum effects are important <u>Science Content Standards for</u> <u>California Public Schools</u> , Grades 9-12, Physics: 1d Students know that when one object exerts a force on a second object, the second object always exerts a force of equal magnitude and in the opposite direction (Newton's third law)
	1.1g Solve problems involving linear and rotational motion in term of forces and torques	Science Content Standards for California Public Schools, Grades 9-12, Physics: 1j* Students know how to resolve two-dimensional vectors into their components and calculate the magnitude and direction of a vector from its components; 1k* Students know how to solve two-dimensional problems involving balanced forces (statics); 11* Students know how to solve problems in circular motion by using the formula for centripetal acceleration in the following form: a=v ² /r
	6.1b Evaluate the assumptions and relevance of the Bohr model of the atom	Science Content Standards for California Public Schools, Grades 9-12, Chemistry: 1i Students know the experimental basis for the development of the quantum theory of atomic structure and the historical importance of the Bohr model of the atom
Ch 5- Applying Newton's laws	1.1a Solve problems using Newton's Second Law (e.g., problems involving time, velocity, and space- dependent forces)	Science Content Standards for California Public Schools, Grades 9- 12, Physics: 1 a Students know how to solve problems that involve constant speed and average speed, 1b <i>Students know</i> that when forces are balanced, no acceleration occurs; thus an object continues to move at a constant speed or stays at rest (Newton's first law); 1c <i>Students know</i> how to apply the law F=ma to solve one-dimensional motion problems that involve constant forces (Newton's second law) 1h * <i>Students know</i> Newton's laws are not exact but provide very good approximations unless an object is moving close to the speed of light or is small enough that quantum effects are important
	1.1c Solve periodic motion problems	Science Content Standards for California Public Schools, Grades 9-12, Physics: 1eStudents know

		the relationship between the
		the relationship between the universal law of gravitation and the effect of gravity on an object at the surface of Earth; f <i>Students</i> <i>know</i> applying a force to an object perpendicular to the direction of its motion causes the object to change direction but not speed (e.g., Earth's gravitational force causes a satellite in a circular orbit to change direction but not speed); 1g <i>Students know</i> circular motion requires the application of a constant force directed toward the center of the circle; I <i>Students</i> <i>know</i> how to solve problems in circular motion by using the formula for centripetal acceleration in the following form: $a=v^2/r$.
	1.1d Solve 2-dimensional	Science Content Standards for
	problems involving vector	California Public Schools, Grades
	analysis of motion and	applying a force to an object
	forces, including projectile	perpendicular to the direction of
	motion, uniform circular	change direction but not speed
	motion, and statics	(e.g., Earth's gravitational force
		orbit to change direction but not
		speed); g Students know circular
		motion requires the application of a constant force directed toward
		the center of the circle; j *
		Students know how to resolve
		components and calculate the
		magnitude and direction of a
		vector from its components; k *
		dimensional problems involving
		balanced forces (statics)
	1.1g Solve problems	Science Content Standards for California Public Schools. Grades
	involving linear and	9-12, Physics: 1j* Students know
	rotational motion in term of	how to resolve two-dimensional
	torces and torques	calculate the magnitude and
		direction of a vector from its
		components; 1k* Students know
		problems involving balanced
		forces (statics); 11 [*] Students know
		motion by using the formula for
		centripetal acceleration in the
Ch & Work on d binstin	2 to Use concernation of	following form: a=v ² /r
CII 0-WORK and KINETIC	2.1a Use conservation of	California Public Schools, Grades
energy	kinetia potential energy	9-12, Physics: 2a Students know
	kineuc-potential energy	now to calculate kinetic energy by using the formula $F=(1/2)mv^2 \cdot 2b$

systems such as oscillating systems (pendula and springs), projectile motion, and roller coasters	Students know how to calculate changes in gravitational potential energy near Earth by using the formula (change in potential energy) =mgh (h is the change in the elevation); 2c Students know how to solve problems involving conservation of energy in simple systems, such as falling objects; 2h * Students know how to solve problems involving conservation of energy in simple systems with various sources of potential energy, such as capacitors and springs
2.1c Solve problems involving linear and rotational motion in terms of conservation of momentum and energy	Science Content Standards for California Public Schools, Grades 9-12, Physics: 2b Students know how to calculate changes in gravitational potential energy near Earth by using the formula (change in potential energy) =mgh (h is the change in the elevation); 2e Students know momentum is a separately conserved quantity different from energy; 2h Students know how to solve problems involving conservation of energy in simple systems with various sources of potential energy, such as capacitors and springs
2.1d Recognize relationships between energy/momentum conservation principles and Newton's Laws	Science Content Standards for California Public Schools, Grades 9-12, Physics: 2b Students know how to calculate changes in gravitational potential energy near Earth by using the formula (change in potential energy) =mgh (h is the change in the elevation); 2c Students know how to solve problems involving conservation of energy in simple systems, such as falling objects; 2d Students know how to calculate momentum as the product mv; 2e Students know momentum is a separately conserved quantity different from energy; 2f Students know an unbalanced force on an object produces a change in its momentum
2.1e Examine the impact of friction on conservation principles	Science Content Standards for California Public Schools, Grades 9-12, Physics: 2b Students know how to calculate changes in gravitational potential energy near Earth by using the formula (change in potential energy) =mgh (h is the change in the

	2.1f Interpret force-versus- time and force-versus- distance graphs to find, for example, work done or impulse on a system	elevation); 2c Students know how to solve problems involving conservation of energy in simple systems, such as falling objects; 2f Students know an unbalanced force on an object produces a change in its momentum <u>Science Content Standards for</u> <u>California Public Schools</u> , Grades 9-12, Physics: 2a Students know how to calculate kinetic energy by using the formula E=(1/2)mv ² ; 2c Students know how to solve problems involving conservation of energy in simple systems, such as falling objects
Ch 7-Potential Energy and Energy Conservation	1.1g Solve problems involving linear and rotational motion in term of forces and torques	Science Content Standards for California Public Schools, Grades 9-12, Physics: 1j* Students know how to resolve two-dimensional vectors into their components and calculate the magnitude and direction of a vector from its components; 1k* Students know how to solve two-dimensional problems involving balanced forces (statics); 11* Students know how to solve problems in circular motion by using the formula for centripetal acceleration in the following form: a=v ² /r
	2.1a Use conservation of energy to characterize kinetic-potential energy systems such as oscillating systems (pendula and springs), projectile motion, and roller coasters	Science Content Standards for California Public Schools, Grades 9-12, Physics: 2a Students know how to calculate kinetic energy by using the formula E=(1/2)mv ² ; 2b Students know how to calculate changes in gravitational potential energy near Earth by using the formula (change in potential energy) =mgh (h is the change in the elevation); 2c Students know how to solve problems involving conservation of energy in simple systems, such as falling objects; 2h * Students know how to solve problems involving conservation of energy in simple systems with various sources of potential energy, such as capacitors and springs
	2.1c Solve problems involving linear and rotational motion in terms of conservation of momentum and energy	Science Content Standards for California Public Schools, Grades 9-12, Physics: 2b Students know how to calculate changes in gravitational potential energy near Earth by using the formula (change in potential energy) =mgh (h is the change in the elevation); 2e Students know momentum is a separately

	2.1d Recognize relationships between energy/momentum conservation principles and Newton's Laws	conserved quantity different from energy; 2h Students know how to solve problems involving conservation of energy in simple systems with various sources of potential energy, such as capacitors and springs <u>Science Content Standards for</u> <u>California Public Schools</u> , Grades 9-12, Physics: 2b Students know how to calculate changes in gravitational potential energy near Earth by using the formula (change in potential energy) =mgh (h is the change in the elevation); 2c Students know how to solve problems involving conservation of energy in simple systems, such as falling objects; 2d Students know how to calculate momentum as the product mv; 2e Students know momentum is a separately conserved quantity different from energy; 2f Students know an unbalanced force on an object produces a change in its momentum
	2.1e Examine the impact of friction on conservation principles	Science Content Standards for California Public Schools, Grades 9-12, Physics: 2b Students know how to calculate changes in gravitational potential energy near Earth by using the formula (change in potential energy) =mgh (h is the change in the elevation); 2c Students know how to solve problems involving conservation of energy in simple systems, such as falling objects; 2f Students know an unbalanced force on an object produces a change in its momentum
	2.1f Interpret force-versus- time and force-versus- distance graphs to find, for example, work done or impulse on a system	<u>Science Content Standards for</u> <u>California Public Schools</u> , Grades 9-12, Physics: 2a Students know how to calculate kinetic energy by using the formula E=(1/2)mv ² ; 2c Students know how to solve problems involving conservation of energy in simple systems, such as falling objects
Ch 8-Momentum, impulse, and collisions	2.1b Analyze elastic and inelastic collisions and solve for unknown values	Science Content Standards for California Public Schools, Grades 9-12, Physics: 2g Students know how to solve problems involving elastic and inelastic collisions in one dimension by using the principles of conservation of momentum and energy

	2.1c Solve problems involving linear and rotational motion in terms of conservation of momentum and energy	Science Content Standards for California Public Schools, Grades 9-12, Physics: 2b Students know how to calculate changes in gravitational potential energy near Earth by using the formula (change in potential energy) =mgh (h is the change in the elevation); 2e Students know momentum is a separately conserved quantity different from energy; 2h Students know how to solve problems involving conservation of energy in simple systems with various sources of potential energy, such as capacitors and springs
	2.1f Interpret force-versus- time and force-versus- distance graphs to find, for example, work done or impulse on a system	Science Content Standards for California Public Schools, Grades 9-12, Physics: 2a Students know how to calculate kinetic energy by using the formula E=(1/2)mv ² ; 2c Students know how to solve problems involving conservation of energy in simple systems, such as falling objects
Ch 9-Rotation of rigid bodies	1.1f Recognize relationships among variables for linear motion and rotational motion	Science Content Standards for California Public Schools, Grades 9-12, Physics: 1h* Students know Newton's laws are not exact but provide very good approximations unless an object is moving close to the speed of light or is small enough that quantum effects are important; 1i* Students know how to solve two-dimensional trajectory problems; 1j* Students know how to resolve two- dimensional vectors into their components and calculate the magnitude and direction of a vector from its components; 1k* Students know how to solve two- dimensional problems involving balanced forces (statics); 11* Students know how to solve problems in circular motion by using the formula for centripetal acceleration in the following form: $a=v^2/r$; 1m* Students know how to solve problems involving the forces between two electric charges at a distance (Coulomb's law) or the forces between two masses at a distance (universal gravitation).
	1.1g Solve problems involving linear and rotational motion in term of	Science Content Standards for California Public Schools, Grades 9-12, Physics: 1j* Students know how to resolve two-dimensional vectors into their components and

	forces and torques	calculate the magnitude and direction of a vector from its components; 1k* Students know how to solve two-dimensional problems involving balanced forces (statics); 11* Students know how to solve problems in circular motion by using the formula for centripetal acceleration in the following form: $a=v^2/r$
	2.1c Solve problems involving linear and rotational motion in terms of conservation of momentum and energy	Science Content Standards for California Public Schools, Grades 9-12, Physics: 2b Students know how to calculate changes in gravitational potential energy near Earth by using the formula (change in potential energy) =mgh (h is the change in the elevation); 2e Students know momentum is a separately conserved quantity different from energy; 2h Students know how to solve problems involving conservation of energy in simple systems with various sources of potential energy, such as capacitors and springs
Ch 10-Dynamics of rotational motion	1.1f Recognize relationships among variables for linear motion and rotational motion	Science Content Standards for California Public Schools, Grades 9-12, Physics: 1h* Students know Newton's laws are not exact but provide very good approximations unless an object is moving close to the speed of light or is small enough that quantum effects are important; 1i* Students know how to solve two-dimensional trajectory problems; 1j* Students know how to resolve two- dimensional vectors into their components and calculate the magnitude and direction of a vector from its components; 1k* Students know how to solve two- dimensional problems involving balanced forces (statics); 1l* Students know how to solve problems in circular motion by using the formula for centripetal acceleration in the following form: $a=v^2/r$; 1m* Students know how to solve problems involving the forces between two electric charges at a distance (Coulomb's law) or the forces between two masses at a distance (universal gravitation).
	1.1g Solve problems involving linear and rotational motion in term of	Science Content Standards for California Public Schools, Grades 9-12, Physics: 1j* Students know how to resolve two-dimensional

	forces and torques	vectors into their components and calculate the magnitude and direction of a vector from its components; 1k* Students know how to solve two-dimensional problems involving balanced forces (statics); 11* Students know how to solve problems in circular motion by using the formula for centripetal acceleration in the following form: a=v ² /r
	2.1c Solve problems involving linear and rotational motion in terms of conservation of momentum and energy	Science Content Standards for California Public Schools, Grades 9-12, Physics: 2b Students know how to calculate changes in gravitational potential energy near Earth by using the formula (change in potential energy) =mgh (h is the change in the elevation); 2e Students know momentum is a separately conserved quantity different from energy; 2h Students know how to solve problems involving conservation of energy in simple systems with various sources of potential energy, such as capacitors and springs
	5.1f Explain properties of transistors, diodes, and semiconductors	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5a Students know how to predict the voltage or current in simple direct current (DC) electric circuits constructed from batteries, wires, resistors, and capacitors; 5d Students know the properties of transistors and the role of transistors in electric circuits
Ch 12-Nuclear Reactions and Applications	3.1f Describe a plasma, state its characteristic properties, and contrast it with an ideal gas	Science Content Standards for California Public Schools, Grades 9-12, Physics: 3b Students know that the work done by a heat engine that is working in a cycle is the difference between the heat flow into the engine at high temperature and the heat flow out at a lower temperature (first law of thermodynamics) and that this is an example of the law of conservation of energy; 3d Students know that most processes tend to decrease the order of a system over time and that energy levels are eventually distributed uniformly
Ch 13-Periodic Motion	1.1c Solve periodic motion problems	Science Content Standards for California Public Schools, Grades 9-12, Physics: 1eStudents know the relationship between the universal law of gravitation and the effect of gravity on an object

		at the surface of Earth; f <i>Students</i> <i>know</i> applying a force to an object perpendicular to the direction of its motion causes the object to change direction but not speed (e.g., Earth's gravitational force causes a satellite in a circular orbit to change direction but not speed); 1g <i>Students know</i> circular motion requires the application of a constant force directed toward the center of the circle; I <i>Students</i> <i>know</i> how to solve problems in circular motion by using the formula for centripetal acceleration in the following form: $a=v^2/r$.
	6.1a Distinguish the four fundamental forces of nature, describe their ranges, and identify their force carriers	Science Content Standards for California Public Schools, Grades 9-12, Chemistry: 1i Students know the experimental basis for the development of the quantum theory of atomic structure and the historical importance of the Bohr model of the atom
Ch 15-Mechanical waves	1.1c Solve periodic motion problems	Science Content Standards for California Public Schools, Grades 9-12, Physics: 1eStudents know the relationship between the universal law of gravitation and the effect of gravity on an object at the surface of Earth; f <i>Students</i> <i>know</i> applying a force to an object perpendicular to the direction of its motion causes the object to change direction but not speed (e.g., Earth's gravitational force causes a satellite in a circular orbit to change direction but not speed); 1g <i>Students know</i> circular motion requires the application of a constant force directed toward the center of the circle; I <i>Students</i> <i>know</i> how to solve problems in circular motion by using the formula for centripetal acceleration in the following form: $a=v^2/r$.
	4.1a Relate wave propagation to properties of materials (e.g., predict wave speed from density and tension)	Science Content Standards for California Public Schools, Grades 9-12, Physics: 4a Students know waves carry energy from one place to another; 4b Students know how to identify transverse and longitudinal waves in mechanical media, such as springs and ropes, and on the earth (seismic waves); 4d Students know sound is a longitudinal wave whose speed depends on the properties of the

		medium in which it propagates
	4.1b Describe, distinguish, and solve both conceptual and numerical problems involving interference, diffraction, refraction, reflection, Doppler effect, polarization, dispersion, and scattering	Science Content Standards for California Public Schools, Grades 9-12, Physics: 4c Students know how to solve problems involving wavelength, frequency, and wave speed; 4e Students know radio waves, light, and X-rays are different wavelength bands in the spectrum of electromagnetic waves whose speed in a vacuum is approximately 3×10 ⁸ m/s (186,000 miles/second); 4f Students know how to identify the characteristic properties of waves: interference (beats), diffraction, refraction, Doppler effect, and polarization
Ch 16-Sound and hearing	1.1c Solve periodic motion problems	Science Content Standards for California Public Schools, Grades 9-12, Physics: 1eStudents know the relationship between the universal law of gravitation and the effect of gravity on an object at the surface of Earth; f <i>Students</i> <i>know</i> applying a force to an object perpendicular to the direction of its motion causes the object to change direction but not speed (e.g., Earth's gravitational force causes a satellite in a circular orbit to change direction but not speed); 1g <i>Students know</i> circular motion requires the application of a constant force directed toward the center of the circle; I <i>Students know</i> how to solve problems in circular motion by using the formula for centripetal acceleration in the following form: $a=v^2/r$.
	4.1b Describe, distinguish, and solve both conceptual and numerical problems involving interference, diffraction, refraction, reflection, Doppler effect, polarization, dispersion, and scattering	Science Content Standards for California Public Schools, Grades 9-12, Physics: 4c Students know how to solve problems involving wavelength, frequency, and wave speed; 4e Students know radio waves, light, and X-rays are different wavelength bands in the spectrum of electromagnetic waves whose speed in a vacuum is approximately 3×10 ⁸ m/s (186,000 miles/second); 4f Students know how to identify the characteristic properties of waves: interference (beats), diffraction, refraction, Doppler effect, and polarization
Ch 17-Temperature and heat	3.1a Solve problems involving the laws of	Science Content Standards for California Public Schools, Grades 9-12, Physics: 3a Students know

thermodynamics using the	heat flow and work are two forms
relationships among	of energy transfer between
i i i i i i i i i i i i i i i i i i i	systems; 3b Students know that
work, heat flow, energy,	the work done by a heat engine
and entropy	that is working in a cycle is the
	difference between the heat flow
	into the engine at high
	temperature and the heat flow out
	at a lower temperature (first law of
	thermodynamics) and that this is
	an example of the law of
	conservation of energy: 3e
	Students know that entropy is a
	quantity that measures the order
	or disorder of a system and that
	this quantity is larger for a more
	disordered eveters 2r * Ctudente
	disordered system, 3g Students
	know now to solve problems
	involving heat flow, work, and
	efficiency in a heat engine and
	know that all real engines lose
	some heat to their surroundings
3.1b Define and correctly	Science Content Standards for
apply thermodynamic	California Public Schools, Grades
appry mermodynamic	9-12, Physics: 3b Students know
properties of materials such	that the work done by a heat
as specific heat (heat	engine that is working in a cycle is
as specific field (field	the difference between the heat
capacity), nears of fusion,	flow into the engine at high
heat of vaporization,	temperature and the heat flow out
thermal conductivity and	at a lower temperature (first law of
thermal conductivity, and	thermodynamics) and that this is
thermal expansion to solve	an example of the law of
problems	conservation of energy: 3c
procients	Students know the internal energy
	of an object includes the energy
	of random motion of the object's
	of random motion of the object's
	referred to as thermal energy. The
	areater the temperature of the
	greater the temperature of the
	object, the greater the energy of
	motion of the atoms and
	molecules that make up the object
3.1e Interpret graphs	Science Content Standards for
showing phase changes and	Calitornia Public Schools, Grades
showing phase changes and	9-12, Physics: 3b Students know
graphs of cyclic processes	that the work done by a heat
	engine that is working in a cycle is
	the difference between the heat
	flow into the engine at high
	temperature and the heat flow out
	at a lower temperature (first law of
	thermodynamics) and that this is
	an example of the law of
	conservation of energy: 3e
	Students know that entropy is a
	quantity that measures the order
	or disorder of a system and that
	this quantity is larger for a more
	disordered system: 2f* Studente
	know the statement "Entropy
	tondo to incrosoca in a low of
	LIEDOS TO INCREASE" IS A IAW OF

		statistical probability that governs
		thermodynamics).
Ch 18-Termal Properties of	3.1a Solve problems	Science Content Standards for
matter	involving the laws of	California Public Schools, Grades
	thermodynamics using the	heat flow and work are two forms
	relationships among	of energy transfer between
	work, heat flow, energy	systems; 3b Students know that
	and entropy	the work done by a heat engine
	and ond opy	difference between the heat flow
		into the engine at high
		temperature and the heat flow out
		thermodynamics) and that this is
		an example of the law of
		conservation of energy; 3e
		Students know that entropy is a
		or disorder of a system and that
		this quantity is larger for a more
		disordered system; 3g * Students
		know how to solve problems
		efficiency in a heat engine and
		know that all real engines lose
		some heat to their surroundings
	3.1b Define and correctly	California Public Schools Grades
	apply thermodynamic	9-12, Physics: 3b Students know
	properties of materials such	that the work done by a heat
	as specific heat (heat	engine that is working in a cycle is the difference between the beat
	capacity), heats of fusion,	flow into the engine at high
	heat of vaporization,	temperature and the heat flow out
	thermal conductivity, and	at a lower temperature (first law of thermodynamics) and that this is
	thermal expansion to solve	an example of the law of
	problems	conservation of energy; 3c
		Students know the internal energy
		of random motion of the object's
		atoms and molecules, often
		referred to as thermal energy. The
		greater the temperature of the
		motion of the atoms and
		molecules that make up the object
	3.1c Solve problems for	Science Content Standards for
	ideal gas systems	9-12 Physics: 3b Students know
		that the work done by a heat
		engine that is working in a cycle is
		the difference between the heat
		temperature and the heat flow out
		at a lower temperature (first law of
		thermodynamics) and that this is
		an example of the law of
		Students know that most

		processes tend to decrease the order of a system over time and that energy levels are eventually distributed uniformly
	3.1e Interpret graphs showing phase changes and graphs of cyclic processes	Science Content Standards for California Public Schools, Grades 9-12, Physics: 3b Students know that the work done by a heat engine that is working in a cycle is the difference between the heat flow into the engine at high temperature and the heat flow out at a lower temperature (first law of thermodynamics) and that this is an example of the law of conservation of energy; 3e Students know that entropy is a quantity that measures the order or disorder of a system and that this quantity is larger for a more disordered system; 3f* Students know the statement "Entropy tends to increase" is a law of statistical probability that governs all closed systems (second law of thermodynamics).
Ch 19-The first law of thermodynamics	3.1a Solve problems involving the laws of thermodynamics using the relationships among work, heat flow, energy, and entropy	Science Content Standards for California Public Schools, Grades 9-12, Physics: 3a Students know heat flow and work are two forms of energy transfer between systems; 3b Students know that the work done by a heat engine that is working in a cycle is the difference between the heat flow into the engine at high temperature and the heat flow out at a lower temperature (first law of thermodynamics) and that this is an example of the law of conservation of energy; 3e Students know that entropy is a quantity that measures the order or disorder of a system and that this quantity is larger for a more disordered system; 3g * Students know how to solve problems involving heat flow, work, and efficiency in a heat engine and know that all real engines lose some heat to their surroundings
	3.1b Define and correctly apply thermodynamic properties of materials such as specific heat (heat capacity), heats of fusion, heat of vaporization, thermal conductivity, and thermal expansion to solve	Science Content Standards for California Public Schools, Grades 9-12, Physics: 3b Students know that the work done by a heat engine that is working in a cycle is the difference between the heat flow into the engine at high temperature and the heat flow out at a lower temperature (first law of thermodynamics) and that this is an example of the law of

	problems	conservation of energy; 3c Students know the internal energy of an object includes the energy of random motion of the object's atoms and molecules, often referred to as thermal energy. The greater the temperature of the object, the greater the energy of motion of the atoms and molecules that make up the object
	3.1c Solve problems for ideal gas systems	Science Content Standards for California Public Schools, Grades 9-12, Physics: 3b Students know that the work done by a heat engine that is working in a cycle is the difference between the heat flow into the engine at high temperature and the heat flow out at a lower temperature (first law of thermodynamics) and that this is an example of the law of conservation of energy; 3d Students know that most processes tend to decrease the order of a system over time and that energy levels are eventually distributed uniformly
Ch 20-The second law of thermodynamics	3.1a Solve problems involving the laws of thermodynamics using the relationships among work, heat flow, energy, and entropy	Science Content Standards for California Public Schools, Grades 9-12, Physics: 3a Students know heat flow and work are two forms of energy transfer between systems; 3b Students know that the work done by a heat engine that is working in a cycle is the difference between the heat flow into the engine at high temperature and the heat flow out at a lower temperature (first law of thermodynamics) and that this is an example of the law of conservation of energy; 3e Students know that entropy is a quantity that measures the order or disorder of a system and that this quantity is larger for a more disordered system; 3g * Students know how to solve problems involving heat flow, work, and efficiency in a heat engine and know that all real engines lose some heat to their surroundings
	3.1b Define and correctly apply thermodynamic properties of materials such as specific heat (heat capacity), heats of fusion, heat of vaporization, thermal conductivity, and	Science Content Standards for California Public Schools, Grades 9-12, Physics: 3b Students know that the work done by a heat engine that is working in a cycle is the difference between the heat flow into the engine at high temperature and the heat flow out at a lower temperature (first law of thermodynamics) and that this is

thermal expansion to solve problems	an example of the law of conservation of energy; 3c Students know the internal energy of an object includes the energy of random motion of the object's atoms and molecules, often referred to as thermal energy. The greater the temperature of the
	object, the greater the energy of motion of the atoms and molecules that make up the object
3.1c Solve problems for ideal gas systems	Science Content Standards for California Public Schools, Grades 9-12, Physics: 3b Students know that the work done by a heat engine that is working in a cycle is the difference between the heat flow into the engine at high temperature and the heat flow out at a lower temperature (first law of thermodynamics) and that this is an example of the law of conservation of energy; 3d Students know that most processes tend to decrease the order of a system over time and that energy levels are eventually distributed uniformly
3.1d Solve problems involving cyclic processes, including calculations of work done, heat gain/loss, , and entropy change	Science Content Standards for California Public Schools, Grades 9-12, Physics: 3d Students know that most processes tend to decrease the order of a system over time and that energy levels are eventually distributed uniformly; 3e Students know that entropy is a quantity that measures the order or disorder of a system and that this quantity is larger for a more disordered system; 3f* Students know the statement "Entropy tends to increase" is a law of statistical probability that governs all closed systems (second law of thermodynamics).
3.1e Interpret graphs showing phase changes and graphs of cyclic processes	Science Content Standards for California Public Schools, Grades 9-12, Physics: 3b Students know that the work done by a heat engine that is working in a cycle is the difference between the heat flow into the engine at high temperature and the heat flow out at a lower temperature (first law of thermodynamics) and that this is an example of the law of conservation of energy; 3e Students know that entropy is a quantity that measures the order or disorder of a system and that this guantity is larger for a more

Ch 21-Electric charge and electric field	3.1b Define and correctly apply thermodynamic properties of materials such as specific heat (heat capacity), heats of fusion, heat of vaporization, thermal conductivity, and thermal expansion to solve problems	disordered system; 3f* Students know the statement "Entropy tends to increase" is a law of statistical probability that governs all closed systems (second law of thermodynamics). <u>Science Content Standards for</u> <u>California Public Schools</u> , Grades 9-12, Physics: 3b Students know that the work done by a heat engine that is working in a cycle is the difference between the heat flow into the engine at high temperature and the heat flow out at a lower temperature (first law of thermodynamics) and that this is an example of the law of conservation of energy; 3c Students know the internal energy of an object includes the energy of random motion of the object's atoms and molecules, often referred to as thermal energy. The greater the temperature of the object, the greater the energy of
Ch 21-Electric charge and electric field	5.1a Analyze electric and magnetic forces, charges, and fields using Coulomb's law, the Lorentz force, and the right-hand rule	motion of the atoms and molecules that make up the object <u>Science Content Standards for</u> <u>California Public Schools</u> , Grades 9-12, Physics: 5e Students know charged particles are sources of electric fields and are subject to the forces of the electric fields from other charges; 5f Students know magnetic materials and electric currents (moving electric charges) are sources of magnetic fields and are subject to forces arising from the magnetic fields of other sources; 5k * Students know the force on a charged particle in an electric field is qE, where E is the electric field at the position of the particle and q is the charge of the particle; 5m Students know static electric fields have as their source some arrangement of electric charges; 5n * Students know the magnitude of the force on a moving particle (with charge q) in a magnetic field is qvB sin(a), where a is the angle between v and B (v and B are the magnitudes of vectors v and B, respectively), and students use the right-hand rule to find the direction of this force
Ch 22-Guass's laws	5.1a Analyze electric and magnetic forces, charges, and fields using Coulomb's	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5e Students know charged particles are sources of

	law, the Lorentz force, and the right-hand rule	electric fields and are subject to the forces of the electric fields from other charges; 5f Students know magnetic materials and electric currents (moving electric charges) are sources of magnetic fields and are subject to forces arising from the magnetic fields of other sources; 5k * Students know the force on a charged particle in an electric field is qE, where E is the electric field at the position of the particle and q is the charge of the particle; 5m Students know static electric fields have as their source some arrangement of electric charges; 5n * Students know the magnitude of the force on a moving particle (with charge q) in a magnetic field is qvB sin(a), where a is the angle between v and B (v and B are the magnitudes of vectors v and B, respectively), and students use the right-hand rule to find the direction of this force
Ch 23-Electrical potential	5.1b Apply energy principles to analyze problems in electricity, magnetism, and circuit theory involving capacitors, resistors, and inductors	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5c Students know any resistive element in a DC circuit dissipates energy, which heats the resistor. Students can calculate the power (rate of energy dissipation) in any resistive circuit element by using the formula Power = IR (potential difference) × I (current) = I^2R ; 5d Students know the properties of transistors and the role of transistors in electric circuits; 5i Students know plasmas, the fourth state of matter, contain ions or free electrons or both and conduct electricity
	5.1c Calculate power, voltage changes, current, and resistance in multiloop circuits involving capacitors, resistors, and inductors	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5a Students know how to predict the voltage or current in simple direct current (DC) electric circuits constructed from batteries, wires, resistors, and capacitors; 5b Students know how to solve problems involving Ohm's law; 5g <i>Students know</i> how to determine the direction of a magnetic field produced by a current flowing in a straight wire or in a coil; 5i Students know plasmas, the fourth state of matter, contain ions or free electrons or both and conduct

		electricity
Ch 24-Capacitance and dielectrics	5.1b Apply energy principles to analyze problems in electricity, magnetism, and circuit theory involving capacitors, resistors, and inductors	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5c Students know any resistive element in a DC circuit dissipates energy, which heats the resistor. Students can calculate the power (rate of energy dissipation) in any resistive circuit element by using the formula Power = IR (potential difference) $\times I$ (current) = I^2R ; 5d Students know the properties of transistors and the role of transistors in electric circuits; 5i Students know plasmas, the fourth state of matter, contain ions or free electrons or both and conduct electricity
	5.1c Calculate power, voltage changes, current, and resistance in multiloop circuits involving capacitors, resistors, and inductors	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5a Students know how to predict the voltage or current in simple direct current (DC) electric circuits constructed from batteries, wires, resistors, and capacitors; 5b Students know how to solve problems involving Ohm's law; 5g <i>Students know</i> how to determine the direction of a magnetic field produced by a current flowing in a straight wire or in a coil; 5i Students know plasmas, the fourth state of matter, contain ions or free electrons or both and conduct electricity
Ch 25 Current resistance	5.1d Interpret and design mixed series and parallel circuits involving capacitors, resistors, and inductors	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5a Students know how to predict the voltage or current in simple direct current (DC) electric circuits constructed from batteries, wires, resistors, and capacitors; 5c Students know any resistive element in a DC circuit dissipates energy, which heats the resistor. Students can calculate the power (rate of energy dissipation) in any resistive circuit element by using the formula Power = IR (potential difference) × I (current) = I^2R
and electromotive force	voltage changes, current, and resistance in multiloop circuits involving capacitors, resistors, and inductors	California Public Schools, Grades 9-12, Physics: 5a Students know how to predict the voltage or current in simple direct current (DC) electric circuits constructed from batteries, wires, resistors, and capacitors; 5b Students know how to solve problems involving

		Ohm's law; 5g Students know how to determine the direction of a magnetic field produced by a current flowing in a straight wire or in a coil; 5i Students know plasmas, the fourth state of matter, contain ions or free electrons or both and conduct electricity
	5.1d Interpret and design mixed series and parallel circuits involving capacitors, resistors, and inductors	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5a Students know how to predict the voltage or current in simple direct current (DC) electric circuits constructed from batteries, wires, resistors, and capacitors; 5c Students know any resistive element in a DC circuit dissipates energy, which heats the resistor. Students can calculate the power (rate of energy dissipation) in any resistive circuit element by using the formula Power = IR (potential difference) × I (current) = I^2R
Ch 26-Direct-current circuits	5.1c Calculate power, voltage changes, current, and resistance in multiloop circuits involving capacitors, resistors, and inductors	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5a Students know how to predict the voltage or current in simple direct current (DC) electric circuits constructed from batteries, wires, resistors, and capacitors; 5b Students know how to solve problems involving Ohm's law; 5g <i>Students know</i> how to determine the direction of a magnetic field produced by a current flowing in a straight wire or in a coil; 5i Students know plasmas, the fourth state of matter, contain ions or free electrons or both and conduct electricity
	5.1d Interpret and design mixed series and parallel circuits involving capacitors, resistors, and inductors	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5a Students know how to predict the voltage or current in simple direct current (DC) electric circuits constructed from batteries, wires, resistors, and capacitors; 5c Students know any resistive element in a DC circuit dissipates energy, which heats the resistor. Students can calculate the power (rate of energy dissipation) in any resistive circuit element by using the formula Power = IR (potential difference) × I (current) = I ² R
Ch 27-Magnetic field and magnetic forces	5.1a Analyze electric and magnetic forces, charges,	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5e Students know

	and fields using Coulomb's law, the Lorentz force, and the right-hand rule	charged particles are sources of electric fields and are subject to the forces of the electric fields from other charges; 5f Students know magnetic materials and electric currents (moving electric charges) are sources of magnetic fields and are subject to forces arising from the magnetic fields of other sources; 5k * Students know the force on a charged particle in an electric field is qE, where E is the electric field at the position of the particle; 5m Students know static electric fields have as their source some arrangement of electric charges; 5n * Students know the magnitude of the force on a moving particle (with charge q) in a magnetic field is qVB sin(a), where a is the angle between v and B (v and B are the magnitudes of vectors v and B, respectively), and students use the right-hand rule to find the direction of this force
Ch 28-Sources of magnetic field	5.1a Analyze electric and magnetic forces, charges, and fields using Coulomb's law, the Lorentz force, and the right-hand rule	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5e Students know charged particles are sources of electric fields and are subject to the forces of the electric fields from other charges; 5f Students know magnetic materials and electric currents (moving electric charges) are sources of magnetic fields and are subject to forces arising from the magnetic fields of other sources; 5k * Students know the force on a charged particle in an electric field is qE, where E is the electric field at the position of the particle; 5m Students know static electric fields have as their source some arrangement of electric charges; 5n * Students know the magnitude of the force on a moving particle (with charge q) in a magnetic field is qVB sin(a), where a is the angle between v and B (v and B are the magnitudes of vectors v and B, respectively), and students use the right-hand rule to find the direction of this force
Ch 29-Electromagnetic induction	5.1c Calculate power, voltage changes, current,	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5a Students know

	and resistance in multiloop circuits involving capacitors, resistors, and inductors	how to predict the voltage or current in simple direct current (DC) electric circuits constructed from batteries, wires, resistors, and capacitors; 5b Students know how to solve problems involving Ohm's law; 5g <i>Students know</i> how to determine the direction of a magnetic field produced by a current flowing in a straight wire or in a coil; 5i Students know plasmas, the fourth state of matter, contain ions or free electrons or both and conduct electricity
	5.1d Interpret and design mixed series and parallel circuits involving capacitors, resistors, and inductors	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5a Students know how to predict the voltage or current in simple direct current (DC) electric circuits constructed from batteries, wires, resistors, and capacitors; 5c Students know any resistive element in a DC circuit dissipates energy, which heats the resistor. Students can calculate the power (rate of energy dissipation) in any resistive circuit element by using the formula Power = IR (potential difference) × I (current) = I^2R
	5.1e Solve problems involving the relationships between electric and magnetic phenomena	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5f Students know magnetic materials and electric currents (moving electric charges) are sources of magnetic fields and are subject to forces arising from the magnetic fields of other sources; 5h <i>Students know</i> changing magnetic fields produce electric fields, thereby inducing currents in nearby conductors; 5j * Students know electric and magnetic fields contain energy and act as vector force fields; 5l * Students know how to calculate the electric field resulting from a point charge; 5o * Students know how to apply the concepts of electrical and gravitational potential energy to solve problems involving conservation of energy
Ch 30-Inductance	1.1c Solve periodic motion problems	Science Content Standards for California Public Schools, Grades 9-12, Physics: 1eStudents know the relationship between the universal law of gravitation and the effect of gravity on an object at the surface of Earth; f Students know applying a force to an object

	perpendicular to the direction of its motion causes the object to change direction but not speed (e.g., Earth's gravitational force causes a satellite in a circular orbit to change direction but not speed); 1g <i>Students know</i> circular motion requires the application of a constant force directed toward the center of the circle; I <i>Students</i> <i>know</i> how to solve problems in circular motion by using the formula for centripetal acceleration in the following form: $a=v^2/r$.
5.1b Apply energy principles to analyze problems in electricity, magnetism, and circuit theory involving capacitors, resistors, and inductors	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5c Students know any resistive element in a DC circuit dissipates energy, which heats the resistor. Students can calculate the power (rate of energy dissipation) in any resistive circuit element by using the formula Power = IR (potential difference) × I (current) = I^2R ; 5d Students know the properties of transistors and the role of transistors in electric circuits; 5i Students know plasmas, the fourth state of matter, contain ions or free electrons or both and conduct electricity
5.1c Calculate power, voltage changes, current, and resistance in multiloop circuits involving capacitors, resistors, and inductors	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5a Students know how to predict the voltage or current in simple direct current (DC) electric circuits constructed from batteries, wires, resistors, and capacitors; 5b Students know how to solve problems involving Ohm's law; 5g <i>Students know</i> how to determine the direction of a magnetic field produced by a current flowing in a straight wire or in a coil; 5i Students know plasmas, the fourth state of matter, contain ions or free electrons or both and conduct electricity
5.1d Interpret and design mixed series and parallel circuits involving capacitors, resistors, and inductors	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5a Students know how to predict the voltage or current in simple direct current (DC) electric circuits constructed from batteries, wires, resistors, and capacitors; 5c Students know any resistive element in a DC circuit dissipates energy, which heats the resistor. Students can

		calculate the power (rate of energy dissipation) in any
		resistive circuit element by using
		the formula Power = IR (potential
		difference) × I (current) = I^2R
	5.1e Solve problems	Science Content Standards for
	involving the relationshing	California Public Schools, Grades
	involving the relationships	9-12, Physics: 5f Students know
	between electric and	magnetic materials and electric
	magnetic phenomena	currents (moving electric charges)
		are sources of magnetic fields
		and are subject to forces arising
		from the magnetic fields of other
		sources; 5h Students know
		changing magnetic fields produce
		electric fields, thereby inducing
		currents in nearby conductors; 5j
		Students know electric and
		magnetic fields contain energy
		and act as vector force fields; 51
		the electric field resulting from a
		noint charge: 50 * Students know
		how to apply the concents of
		electrical and gravitational
		potential energy to solve
		problems involving conservation
		of energy
Ch 31-Alternating current	1 1c Solve periodic motion	Science Content Standards for
en st miemanig earrent	nich boive periodie motion	California Public Schools, Grades
	problems	9-12, Physics: 1eStudents know
		the relationship between the
		universal law of gravitation and
		the effect of gravity on an object
		at the surface of Earth; f Students
		know applying a force to an object
		its motion acuses the object to
		change direction but not speed
		(e.g. Earth's gravitational force
		causes a satellite in a circular
		orbit to change direction but not
		speed): 1g <i>Students know</i> circular
		motion requires the application of
		a constant force directed toward
		the center of the circle; IStudents
		know how to solve problems in
		circular motion by using the
		formula for centripetal
		acceleration in the following form:
		a=v ² /r.
	5.1c Calculate power.	Science Content Standards for
	voltage changes current	California Public Schools, Grades
	and assistance in multile	9-12, Physics: 5a Students know
	and resistance in multiloop	how to predict the voltage or
	circuits involving	Current in simple direct current
	capacitors, resistors, and	(DC) electric circuits constructed
	inductors	and capacitors: 5h Students know
	maucions	how to solve problems involving
		Ohm's law: 5g Students Involving
		how to determine the direction of

		a magnetic field produced by a current flowing in a straight wire or in a coil; 5i Students know plasmas, the fourth state of matter, contain ions or free electrons or both and conduct electricity
	5.1d Interpret and design mixed series and parallel circuits involving capacitors, resistors, and inductors	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5a Students know how to predict the voltage or current in simple direct current (DC) electric circuits constructed from batteries, wires, resistors, and capacitors; 5c Students know any resistive element in a DC circuit dissipates energy, which heats the resistor. Students can calculate the power (rate of energy dissipation) in any resistive circuit element by using the formula Power = IR (potential difference) × I (current) = I ² R
	5.1e Solve problems involving the relationships between electric and magnetic phenomena	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5f Students know magnetic materials and electric currents (moving electric charges) are sources of magnetic fields and are subject to forces arising from the magnetic fields of other sources; 5h <i>Students know</i> changing magnetic fields produce electric fields, thereby inducing currents in nearby conductors; 5j * Students know electric and magnetic fields contain energy and act as vector force fields; 5l * Students know how to calculate the electric field resulting from a point charge; 5o * Students know how to apply the concepts of electrical and gravitational potential energy to solve problems involving conservation of energy
Ch 32-Electromagnetic waves	1.1c Solve periodic motion problems	Science Content Standards for California Public Schools, Grades 9-12, Physics: 1eStudents know the relationship between the universal law of gravitation and the effect of gravity on an object at the surface of Earth; f Students know applying a force to an object perpendicular to the direction of its motion causes the object to change direction but not speed (e.g., Earth's gravitational force causes a satellite in a circular orbit to change direction but not speed); 1g Students know circular motion requires the application of

		a constant force directed toward the center of the circle; I <i>Students</i> <i>know</i> how to solve problems in circular motion by using the formula for centripetal acceleration in the following form: $a=v^2/r$.
	4.1b Describe, distinguish, and solve both conceptual and numerical problems involving interference, diffraction, refraction, reflection, Doppler effect, polarization, dispersion, and scattering	Science Content Standards for California Public Schools, Grades 9-12, Physics: 4c Students know how to solve problems involving wavelength, frequency, and wave speed; 4e Students know radio waves, light, and X-rays are different wavelength bands in the spectrum of electromagnetic waves whose speed in a vacuum is approximately 3×10 ⁸ m/s (186,000 miles/second); 4f Students know how to identify the characteristic properties of waves: interference (beats), diffraction, refraction, Doppler effect, and polarization
	5.1e Solve problems involving the relationships between electric and magnetic phenomena	Science Content Standards for California Public Schools, Grades 9-12, Physics: 5f Students know magnetic materials and electric currents (moving electric charges) are sources of magnetic fields and are subject to forces arising from the magnetic fields of other sources; 5h <i>Students know</i> changing magnetic fields produce electric fields, thereby inducing currents in nearby conductors; 5j * Students know electric and magnetic fields contain energy and act as vector force fields; 5l * Students know how to calculate the electric field resulting from a point charge; 5o * Students know how to apply the concepts of electrical and gravitational potential energy to solve problems involving conservation of energy
Ch 33-The nature and propagation of light	4.1b Describe, distinguish, and solve both conceptual and numerical problems involving interference, diffraction, refraction, reflection, Doppler effect, polarization, dispersion, and scattering	Science Content Standards for California Public Schools, Grades 9-12, Physics: 4c Students know how to solve problems involving wavelength, frequency, and wave speed; 4e Students know radio waves, light, and X-rays are different wavelength bands in the spectrum of electromagnetic waves whose speed in a vacuum is approximately 3×10 ⁸ m/s (186,000 miles/second); 4f Students know how to identify the characteristic properties of waves: interference (beats), diffraction,

		refraction, Doppler effect, and
Ch 34-Geometrical optics and optical instruments	4.1b Describe, distinguish, and solve both conceptual and numerical problems involving interference, diffraction, refraction, reflection, Doppler effect, polarization, dispersion, and scattering	Science Content Standards for California Public Schools, Grades 9-12, Physics: 4c Students know how to solve problems involving wavelength, frequency, and wave speed; 4e Students know radio waves, light, and X-rays are different wavelength bands in the spectrum of electromagnetic waves whose speed in a vacuum is approximately 3×10 ⁸ m/s (186,000 miles/second); 4f Students know how to identify the characteristic properties of waves: interference (beats), diffraction, refraction, Doppler effect, and polarization
Ch 35-Intererence	4.1b Describe, distinguish, and solve both conceptual and numerical problems involving interference, diffraction, refraction, reflection, Doppler effect, polarization, dispersion, and scattering	Science Content Standards for California Public Schools, Grades 9-12, Physics: 4c Students know how to solve problems involving wavelength, frequency, and wave speed; 4e Students know radio waves, light, and X-rays are different wavelength bands in the spectrum of electromagnetic waves whose speed in a vacuum is approximately 3×10 ⁸ m/s (186,000 miles/second); 4f Students know how to identify the characteristic properties of waves: interference (beats), diffraction, refraction, Doppler effect, and polarization
Ch 36-Diffraction	4.1b Describe, distinguish, and solve both conceptual and numerical problems involving interference, diffraction, refraction, reflection, Doppler effect, polarization, dispersion, and scattering	Science Content Standards for California Public Schools, Grades 9-12, Physics: 4c Students know how to solve problems involving wavelength, frequency, and wave speed; 4e Students know radio waves, light, and X-rays are different wavelength bands in the spectrum of electromagnetic waves whose speed in a vacuum is approximately 3×10 ⁸ m/s (186,000 miles/second); 4f Students know how to identify the characteristic properties of waves: interference (beats), diffraction, refraction, Doppler effect, and polarization